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A recently developed particle-level numerical method is used to simulate flexible fibre
suspensions in Newtonian simple shear flow. In this method, the flow is computed on
a fixed regular ‘lattice’ using the lattice Boltzmann method, where each solid particle,
or fibre in this case, is mapped onto a Lagrangian frame moving continuously through
the domain. The motion and orientation of the fibre are obtained from Newtonian
dynamics equations. The effect of fibre stiffness on the rheology of flexible fibre
suspensions is investigated and a relation for the relative viscosity is obtained. We
show that fibre stiffness (bending ratio, BR) has a strong impact on rheology in
the range BR < 3. The relative viscosity increases significantly as BR decreases. These
results show that the primary normal stress difference has a minimum value at BR ∼ 1.
The primary normal stress difference for slightly deformable fibres reaches a minimum
and increases significantly as BR decreases below one. The results are explained based
on Batchelor’s relation for non-Brownian suspensions.
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1. Introduction
Fibre stiffness plays an important role in determining the rheological properties of

fibre suspensions. It is known that the microstructure and rheology of fibre suspensions
depend on fibre volume fraction, aspect ratio and flexibility. Most previous theoretical
and experimental studies are focused on the first two factors. Hence an understanding
of the effect of fibre stiffness on the microstructure and rheology of flexible fibre
suspensions is of both practical and theoretical interest. In this paper, we employ a
particle-level simulation method to understand the underlying physical processes. The
dynamics of each fibre are solved numerically to calculate the fibre’s position and
orientation and thus to predict the fibre suspension’s microstructure. The rheological
properties are computed based on direct numerical simulation of fibre suspensions.

Claeys & Brady (1993) have done extensive numerical calculations for elongated
particles in an unbounded fluid with hydrodynamic interactions using Stokesian
dynamics. Yamane, Kaneda & Doi (1994) and Fan, Phan-Thien & Zheng (1998)
included both long-range hydrodynamic interactions and lubrication resistance force
in their simulations. These authors obtained good agreement with early experiments
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by Carter (1967), Goto, Nagazono & Kato (1986), Bibbo, Dinh & Armstrong (1985)
and Stover, Koch & Cohen (1992).

In all the above mentioned studies, the fibre is considered as a rigid rod-like cylinder
in Stokes flow where the inertia of fluid and fibre is ignored. Experimental studies
(Forgacs & Mason 1959; Blakeney 1966; Goto et al. 1986) have shown that slight
fibre curvature would change the period of fibre rotation and the shear viscosity
of the suspension. If the fibre’s geometry is important, then the fibre’s flexibility
is equally important. Yamamoto & Matsuoka (1992) modelled a flexible fibre as a
chain of spring-linked spheres. The constraints for springs are implemented in the
equation of motion. Joung, Phan-Thien & Fan (2001) followed a similar idea and
used ‘spring-linked spheres’ to model long flexible fibres. The relative viscosities for
fibres having different flexibility were calculated and compared with experimental
results from Bibbo (1987).

Ross & Klingenberg (1997) treated a flexible fibre as a chain of rigid prolate
spheroids connected by ball and socket joints. Compared to Yamamoto & Matsuoka’s
model, there is no need to solve the iterative constraints for connected springs, and the
model can extend to high-aspect-ratio fibres. Schmid, Switzer & Klingenberg (2000)
followed this idea and modelled flexible fibres as chains of rigid rods. Their research
focused on fibre flocculation, and they concluded that flocculation is strongly affected
by interparticle forces and fibre deformations. However, they did not consider the
hydrodynamic interactions between fibres, nor the two-way coupling between fibres
and the suspending fluid. Lindstrom & Uesaka (2008) did similar investigations
by using the same model to simulate flexible fibres with high aspect ratio. These
researchers demonstrated that fibre concentration, aspect ratio, equilibrium geometry,
fibre flexibility and fibre–fibre interactions are important factors in determining the
suspension microstructure and rheology.

In this study, we use the recently developed particle-level numerical method (Wu &
Aidun 2010a) combined with the lattice-Boltzmann fluid-phase solver (Aidun, Lu &
Ding 1998) to obtain the microstructure and rheological properties of flexible fibre
suspensions. The important aspects of this study are (i) simulations include mechanical
fibre–fibre interactions and lubrication forces, (ii) the fluid and fibres are two-way
coupled with direct numerical simulation, (iii) the physical properties of the flexible
fibre are directly related to simulation parameters and (iv) the present method can ef-
ficiently simulate large numbers of flexible fibres (of the order of 104) in a periodic cell
with the range of simulation extended to a concentrated regime of industrial interest,
beyond the range of the earlier studies. In this study, the motion and orientation of
the fibre are obtained from Newtonian dynamics equations. The fibre deformation is
calculated by an efficient flexible fibre model. The no-slip boundary condition at the
fluid–solid interface is based on the external boundary force (EBF) method. The details
of this method are presented in previous papers (Wu & Aidun 2010a ,b). Detailed
explanation and derivation of the methodology can be found in these two papers.

The remainder of this paper is organized as follows. In § 2, fibre-suspension rheology
and the related parameters are described in detail. Results from several simulations
with various fibre stiffness, aspect ratio and volume concentration are presented in § 3.
Some physical explanations and discussions are also included in this section, with
some concluding remarks in § 4.

2. Fibre-suspension rheology
To classify the level of fibre concentration, this study follows the classification of

fibre concentration by Doi & Edwards (1978) based on the value of nL3, where n is
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Figure 1. (Colour online) The spherical coordinate system for a fibre in an
x, y simple shear flow.

the number of fibres per unit volume and L is the fibre length. In the dilute regime
when nL3 < 1, the fibres move without interference from other fibres. In the semi-
dilute regime, 1 <nL3 <L/D, where D is the fibre diameter, some fibre contacts are
possible. In the concentrated regime, nL3 >L/D, fibre–fibre interaction is dominant.
The fibre-suspension parameters of relevance in this study are the fibre aspect ratio
(rp =L/D), fibre volume fraction (cvf = nLπD2/4) and fibre bending ratio (BR),
which is the non-dimensional measure of fibre stiffness. The bending ratio is defined
by Forgacs & Mason (1959) and Goldsmith & Mason (1967) as

BR ≡ EY (ln2re − 1.5)

2(µγ̇ )r4
p

. (2.1)

Here, EY is the fibre Young’s modulus, µ is the fluid viscosity, γ̇ is the shear rate
and re is the effective aspect ratio. For a rigid cylinder of aspect ratio rp = L/D,

re = 1.24rp/
√

lnrp (Cox 1971). For an axisymmetric slender particle in the Stokes
flow, the governing equations are given by Jeffery (1922)

tanφ = retan

(
2πt

Tp

+ φ0

)
, (2.2)

tanθ =
Cjre(

r2
e cos2φ + sin2φ

)1/2
, (2.3)

where φ and θ are the orientation angles as shown in figure 1. Cj and φ0 are the
Jeffery orbit constant and phase angle, respectively. It is advantageous to use Cb ≡
Cj/(Cj + 1), since Cj takes values from 0 to ∞, while Cb is bound between 0 and 1.

In this study, the Péclet number Pe ∼ 1014, so Brownian motion is negligible. The
particle Reynolds number, Re = γ̇ LD/ν, is very small (1.72 × 10−5 to 5.59 × 10−5)
and therefore inertia is negligible.

The rheological properties presented below are directly computed based on
numerical computation of the averaged stress tensor in a cubic-box-shaped subdomain
within an unbounded computational shear domain based on the Lees–Edwards
boundary condition. The details of the computational method are outlined in Wu &
Aidun (2010a). The relative shear viscosity η is given by

η ≡ µeff

µ
=

σxy

2µExy

, (2.4)

where µeff is the effective shear viscosity, µ is the viscosity of the suspending fluid,
Exy = γ̇ /2 is the shear strain component of the strain rate tensor, E, and σxy is the
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shear stress component of the stress tensor, σ . The first normal stress difference is
given by

N1 ≡ σxx − σyy. (2.5)

The Batchelor’s relation (Batchelor 1971) for the contribution of the suspended
fibres to the stress tensor in dilute suspensions without Brownian motion would be
useful in explaining some of the computational results. This relation is given by

σB = 2µE + µfibre

(
〈 pppp〉 − 1

3
In〈 pp〉

)
: E, (2.6)

where In is the unit tensor, p = pxex + pyey + pzez is a unit vector parallel to the
fibre axis of symmetry and ex , ey and ez are the unit vectors in the flow direction,
velocity gradient direction and vorticity axis direction, respectively. The angle bracket,
〈〉, represents an average over all the suspended fibres. µfibre is a function of fibre
concentration, orientation distribution and fibre aspect ratio. From (2.6), it can be
shown that the relative viscosity, ηB , is given by

ηB =
σB

xy

2µExy

= 1 +
µfibre

µ

〈
p2

xp
2
y

〉
, (2.7)

and the first effective normal stress difference is given by

NB
1 = σB

xx − σB
yy = µfibre γ̇

(〈
p3

xpy

〉
−

〈
p3

ypx

〉)
. (2.8)

The rheological properties calculated from (2.7) and (2.8) depend on the accuracy
of Batchelor’s theory which requires that fibres move freely with no fibre–fibre
interactions. In this study, we investigate suspensions from dilute to concentrated
regimes, where all rheological properties are calculated directly from computational
results without such restriction. Here Batchelor’s theory is presented only to explain
the relation between the fibre-orientation distribution and the pure hydrodynamic
contribution to the suspension stress. This feature is very helpful in explaining the
results in § 3.

Both the relative shear viscosity and effective normal stress differences are important
in describing the non-Newtonian nature of fibre suspensions. The effective normal
stress difference shows the non-symmetric changes in the p(φ) distribution function.
The moments in (2.5) are all zero if the orientation distribution function is symmetric
with respect to the xz-plane. These moments are very small and sensitive, and they
are difficult to measure by experimental techniques. Bibbo (1987) confirmed that the
transient normal stress difference was proportional to γ̇ , but the value of the normal
force was below the sensitivity of the rheometer.

3. Results and discussion
Validation of the lattice Boltzmann approach with the EBF method for fibre

suspensions and details of the computational method are presented in previous
publications (Wu & Aidun 2010a ,b) and will not be repeated here. The focus of this
study is to investigate the effect of fibre stiffness on the rheology of flexible fibre
suspensions. Fibres with different stiffness, aspect ratio and volume concentration are
considered.

An unbounded shear domain is implemented based on the Lees–Edwards boundary
condition (Lees & Edwards 1972), as described by Wagner & Pagonabarraga (2002)
and MacMeccan et al. (2009), to improve computational efficiency and to remove wall
effects. All simulations are in lattice Boltzmann (LB) units where the computational
domain is 4L × 5L × 4L, the fibre diameter is 0.4 lattice units, density is 1, viscosity is
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Figure 2. (Colour online) Normalized relative viscosity, η/ηrigid , versus fibre-bending ratio,
BR, for flexible fibre suspensions with different fibre aspect ratio, rp, and volume concentration
cvf . η is the relative viscosity of the flexible fibre suspension and ηrigid is the relative viscosity
of the rigid fibre suspension with the same rp and cvf . The solid line (–), dashed line (- - -)
and dotted line (· · ·) are the corresponding curve-fitting results. (a) rp = 16 and (b) rp = 32.

1/6, and the shear rate is 1.12 × 10−6 corresponding to Re = 1.72 × 10−5 for rp = 16.
The values in the physical units depend on the fluid properties. For example, for
PDMS10k used by Bibbo (1987), where the dynamic viscosity is 13 Pa s, the density
is 0.97 × 103 kg m−3 and fibre diameter 0.12 mm, the shear rate of 1 s−1 gives the
same value of Re = 1.72 × 10−5.

3.1. Relative viscosity

To study the effect of fibre stiffness on relative viscosity, two cases with aspect ratio
rp = 16 and 32 are considered. Figure 2 shows that the fibre bending ratio, BR, at
a given shear rate, has a significant influence on the suspension’s relative viscosity.
In all of the results presented here, shear rate remains constant where BR changes
by changing the Young’s modulus. When BR < 3, the suspension viscosity is indeed
inversely related to the fibre stiffness, while for BR > 3, the fibre can be considered
as rigid. The difference between flexible fibres and rigid fibres is quite large. For
fibres with the same aspect ratio, this difference increases as suspension concentration
increases. The difference also increases with fibre aspect ratio for suspensions having
the same concentration. It should be emphasized that BR should be considered as a
non-dimensional measure of fibre deformation. Variation in shear rate will influence
fibre deformation as well as fibre–fibre interaction, and both effects influence the
rheological properties. In other words, relative viscosity is a function of γ̇ as well as
BR. Hence, all results shown here are particular to the shear rate of 1.12 × 10−6 in
LB units, though similar trends with BR are expected at other rates of shear.

The relative viscosity of a flexible fibre suspension may be fitted with the empirical
equation (Joung et al. 2001),

η = ηrigid

(
1 +

A0

1 + eBR/A1

)
. (3.1)

Here A0 and A1 are parameters that can be determined from the simulation data
by least-squares curve fitting. From the simulation results, these two parameters are
estimated to be

A0 = rp(1.00082cvf + 0.69672c2
vf ), A1 = 70/r2

e . (3.2)
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Figure 3. The φ distribution for flexible fibre suspensions with different aspect ratio rp and
bending ratio BR. Fibre volume fraction cvf = 0.053.

Equation (3.1) is then used to fit the simulation data, as shown in figure 2. This
relation can be used to predict the flexible fibre suspension viscosity. The relative
viscosity of a rigid fibre suspension can be easily found through existing methods;
one only needs to know the fibre bending ratio BR, fibre aspect ratio rp and the
suspension volume fraction cvf to find the two parameters in (3.2) and then calculate
the relative viscosity for the flexible fibre suspension using (3.1).

The effect of fibre stiffness (BR) on the relative viscosity can be explained based on
the fibre-orientation distribution. The relation based on Batchelor’s theory is presented
here. This equation is in principle valid only in the dilute regime. However, Batchelor’s
theory clearly relates rheological properties with suspension microstructure, including
the effects of hydrodynamic interactions. The equations are based on the fibre-
orientation distribution, implicitly including some of the effects of non-hydrodynamic
interactions.

Based on the spherical coordinate system, as shown in figure 1, (2.7) becomes

ηB = 1 +
µfibre

µ

〈
p2

xp
2
y

〉
= 1 +

µfibre

4µ

〈
sin4θ sin22φ

〉
. (3.3)

Equation (3.3) shows that the fibre orientation has a strong influence on the
suspension’s shear viscosity. The shear stress has a maximum value when the fibre-
orientation angle φ is equal to π/4 or 3π/4 and has a minimum value when φ is equal
to 0, π/2 or π.

Figure 3 shows the φ distribution, with different aspect ratio and bending ratio BR
for suspensions with fibre volume fraction cvf = 0.053. For suspensions with the same
volume fraction and fibre aspect ratio, at lower bending ratio (i.e. more flexible), the
φ distribution becomes broader with a lower peak, showing that the suspending fibres
are mostly oriented away from the xz-plane, thus increasing the suspension shear
viscosity. Also the asymmetry of the φ distribution, observed in the small BR range,
indicates that the fibre–fibre mechanical interaction and fibre deformation are present
in this regime. The consequences of this observation will be discussed further below.

3.2. First normal stress difference

In this section the dependence of the first normal stress difference N1 on the fibre
stiffness BR and fibre volume fraction cvf is investigated. First, the simulation results
are compared with experimental results from the literature as shown in figure 4.
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Figure 4. (Colour online) The non-dimensional first normal stress difference N1/(µγ̇ ) as a
function of nL2D for rigid fibre suspensions. The open triangles (�) are the experimental data
of Carter (1967) and the open upside-down triangles (�) are the experimental data of Petrich
et al. (2000). The solid line (—) is the prediction of Carter’s model, (3.5), with Kc = 0.08.
The dashed line (- - -) is the Batchelor’s first normal stress difference NB

1 , (2.8), calculated
by Petrich et al. (2000). The solid squares (�) are the simulation results from the present
lattice-Boltzmann method with EBF.

Petrich, Koch & Cohen (2000) and Carter (1967) performed experiments in semi-dilute
and concentrated regimes with results showing similar patterns with some discrepancy.
Petrich et al. also measured the average value of (〈p3

xpy〉 − 〈p3
ypx〉) and calculated the

Batchelor’s first normal stress difference NB
1 by using (2.8), as shown in figure 4. The

value of NB
1 computed by Petrich et al. (2000) is much lower than the experimental

result. The discrepancy increases with fibre concentration. As previously discussed,
Batchelor’s theory only includes hydrodynamic contributions, but in the semi-dilute
and concentrated regimes, non-hydrodynamic interactions and fibre–fibre interacions
become important. Present simulation results are closer to Carter’s experimental
results with the same discrepancy compared to Batchelor’s solutions.

Based on the following relation, Carter (1967) predicts the first normal stress
difference for rigid fibre suspensions to be given by

NC
1

µγ̇
∝

cvf r2
p

ln(2rp) − 1.8
〈sin(2φ)〉. (3.4)

Carter assumes that 〈sin(2φ)〉 ∝
√

1/rp , and therefore (3.4) can be written as

NC
1

µγ̇
= Kc

cvf r3/2
p

ln(2rp) − 1.8
, (3.5)

where Kc is a constant to be determined experimentally. Different investigators
applied Carter’s model to their normal stress measurements (Carter 1967; Kitano &
Kataoka 1981; Goto et al. 1986; Zirnsak, Hur & Boger 1994; Petrich et al. 2000;
Sepehr et al. 2004; Keshtkar, Heuzey & Carreau 2009). The measured data fall
within a range for Kc from 0.04 to 0.32, although no clear relation between Kc and
variables such as fibre volume fraction and aspect ratio has been reported. We also
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Figure 5. (Colour online) The non-dimensional first normal stress difference N1/(µγ̇ ) versus
fibre bending ratio, BR, for flexible fibre suspensions with different fibre aspect ratio rp and
volume concentration cvf .

implemented Carter’s formula with our simulation results using Kc = 0.08, the same as
Petrich et al. (2000) (Kc = 0.08) and similar to Keshtkar et al. (2009) (Kc =0.1 ± 0.01)
in their studies, as shown with the solid line in figure 4. The Carter’s model predicts
the trend of the experimental results, not the value, by choosing the appropriate
Kc. According to Lindstrom & Uesaka (2008), the assumption for the model,
〈sin(2φ)〉 ∝

√
1/rp , becomes more valid in a concentrated regime.

Figure 5 shows the effect of fibre flexibility on the non-dimensional fibre normal
stress difference for fibres with aspect ratio rp = 16 and 32. These results show
that an increase in fibre volume fraction leads to an increase of the first normal
stress difference. Higher volume fraction results in more fibre–fibre interaction and
consequently increases N1. It is interesting to note that for suspensions with the
same fibre volume fraction, the first normal stress difference will decrease with
decreasing bending ratio reaching a minimum at a critical bending ratio BRc close
to one, and will then increase with decreasing BR below BRc. A similar trend is
also found in the experimental data of Keshtkar et al. (2009). It is apparent that the
suspension parameters such as fibre aspect ratio, fibre stiffness, volume concentration
and suspension microstructure can influence N1. However, it is interesting to see if
the trend observed in figure 5 can be explained using Batchelor’s theory. Based on
the spherical coordinate system, as shown in figure 1, (2.8) becomes

NB
1 = µfibre γ̇

(〈
p3

xpy

〉
−

〈
p3

ypx

〉)
= −µfibre γ̇

4

(〈
sin4θ sin4φ

〉)
. (3.6)

Equation (3.6) shows that in the absence of direct physical contact between fibres and
without fibre deformation (rigid fibre), the fibre-orientation distribution p(φ) would
be symmetric about the xz-plane; therefore, NB

1 = 0, since it is an odd function of py .
In other words, if direct contact between fibres exists or if fibres are deformable, NB

1

will not vanish. Figure 3 shows that for decreasing bending ratio, BR (more flexible
fibre), the mean orientation angle 〈φ〉 becomes slightly less than π/2, 〈sin4φ〉 becomes
a small negative value. This small asymmetry of the fibre-orientation distribution
gives rise to a positive value of NB

1 based on (3.6).
On the other hand, the orientation distribution of θ is also very important for

the first normal stress difference, as shown in (3.6). NB
1 increases with θ , where θ is
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Figure 6. (Colour online) The mean orbit constant 〈Cb〉 versus fibre bending ratio, BR, for
flexible fibre suspensions with different fibre aspect ratio rp and volume concentration cvf .

directly related to the orbit constant Cb, and Cb can be calculated numerically for
every fibre with (2.3). Figure 6 shows the relation between the mean orbit constant
〈Cb〉 and the fibre bending ratio. Based on bending ratio BR and (3.6), the relation
between θ , p(φ) and NB

1 can be divided into two regimes (BR less than or greater than
BRc). When BR >BRc, the suspending fibres are rigid or slightly deformable. The
suspensions have similar fibre-orientation distribution, p(φ), as shown in figure 3 and
the orientation angle θ is the main factor for changing NB

1 . Decreasing BR reduces the
orientation angle θ and the mean orbit constant 〈Cb〉. NB

1 decreases with decreasing
BR. When BR < BRc, the suspended fibres become flexible. Both θ and p(φ) become
important factors for NB

1 . In this regime, the suspending fibres are more randomly
oriented and 〈Cb〉 increases with decreasing bending ratio, 〈Cb〉 ∼ 0.45 when BR → 0.
At the same time, the fibre-orientation distribution p(φ) becomes more asymmetric
and NB

1 increases with decreasing BR.
It is important to note that (3.6) only includes the hydrodynamic contributions from

the suspension, and does not include non-hydrodynamic interactions and fibre–fibre
interactions. Therefore, the first normal stress difference, shown in figure 5, is not
strictly proportional to the orbit constant Cb in figure 6, even if they have the same
fibre-orientation distribution p(φ).

4. Conclusion
The direct computational method developed by Wu & Aidun (2010a ,b) for fibre

suspensions has been useful for analysis of the rheology of flexible fibre suspensions
in unbounded shear. In particular, the ability to directly compute the fibre-orientation
distribution allows better insight into the effect of fibre flexibility on effective viscosity
and first normal stress difference investigated in this study. As fibre flexibility increases
(i.e. BR decreases), the relative suspension viscosity increases significantly. This is
due to broader fibre-orientation distribution in the vorticity plane based on fibre
deformation and increase in fibre–fibre interaction. As bending ratio decreases, fibre
deformations in the compression and extension axes vary resulting in an asymmetric
fibre orientation distribution p(φ). It is shown that asymmetry in p(φ) either due
to fibre deformation or direct fibre–fibre contact results in positive primary normal
stress difference.
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